v

AD=AO44 716  WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER F/6 1272
MATHEMATICAL MODELS OF ROAD TRAVEL DISTANCES. (V)
FEB 77 R F LOVE: J & MORRIS DAAG29=75-C=0024
UNCLASSIFIED MRC=TSR=1719 NL

| of '




-

Iz fi= I

“]tla IR




T A T —

MRC Technical Summary Report # 1719

»
S
y

TRAVEL DISTANCES

116

,j; 2

ADA G4«

MATHEMATICAL MODELS OF ROAD

Robert F. Love and James G. Morris

Mathematics Research Center
University of Wisconsin—Madison ' -

610 Walnut Street

Madison, Wisconsin 53706

February 1977

x):‘

4%'.(Received March 19, 1976)

{

G FILE C

Sponsored by

U. S. Army Research Office
P. ©O. Box 221

Research Triangle Park
North Carolina 27709

n D C

TR

\ s e z
‘ o I | Lol

Approved for public release

Distribution unlimited




UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

MATHEMATICAL MODELS OF ROAD TRAVEL DISTANCES
Robert F. LL;V("“ and James G. Morrlsi
Technical Summary Report # 1719
February 1977
ABSTRACT

Management science models often require estimates of distances
between points in a road network based on the point coordinates. These
estimates are typically derived using rectangular or Euclidean distance func-
tions. The present investigation employs more general functions to estimate
samples of urban and rural road distances. Proofs of conditions for the
convexity of the functions are given. Statistical comparisons are made of
prediction accuracy in order to establish relative merit. Sensitivity of the
best parameters of the functions with respect to different geographical areas

suggests the importance of using empirical distance functions.
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MATHEMATICAL MODELS OF ROAD TRAVEL DISTANCES

¥ i

Robert F. love' and James G. Morrns

1. Introduction
The rescarch described here was carrvied out to fit mathenztical

to gcets of urbaun and rural rosd distance data. The objective of the stu

v

to cvaluate distance predicting functions. In a previovs study [6], seven
different functions were investigated which transforam coordinates of points
into estimates of road distances between those points. The function whi
gave superior accuracy was
} 1/s
2 P
d(q, r; k, p, 8) = k| £ fq, - r |
i i
» i”l
" where q=(q1. q2) and r—(rl, r2) are points in two-dimensjonal space and k,

p and 8 are pargmeters. The wmost suitable value for s was not markedly

different frowm that of p when the function was "fitted" te two different sets

'Research sponsored by the United States Army under Contract No. DAAG29-75-
C-0024 and a grant from the Graduate School of the University of Wisconsin.
Visiting Professor, University of Waterloo, Waterloo, Ontario, in 1976-1977.

3Research supported by a summer research grant awarded by the Graduate
School, Kent State University. Visiting Associate Professor, University of
Wisconsin-Madison, in 1976-1977.
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of sampled inter-city road distances. The function d(q, r; k, p, p) was sug-
gested for practical use since one less parameter wust be estimated frea the
data.

As many locational analyses are accomplished within an urban or rural
setting, it scems appropriate to favestigate vhether such distances can clso
be modeled more accurately thow with the custorary rectangular or Euclideui
distance functions, The data sets used in this paper were samples of rcad
distances in a Wisccnsin rural region and in the Wisconsin cities of 'adison
and Milwaukee. In addition, sampled road distances were included from the
cities of Canton, Coluwbus, and Toledo in Ohio. These citiecs were chosen to
provide a spectrum of road network regularity and varying decgrees of accom-
unodations to physical obstructions.

Five distance functions are establiched as nodele for consideraticn.
These are denoted by:

dl(q, r) = k1§1|q1(0) - ri(0)|, k > 0, where ql(B) = q; cos 6 + q, sin @,
qz(O) ol Y sin 0 + q, cos 0 end sinilarly for ri(O),

dz(q, ) . dla. 2y K T, Y, K >0,

63(q. r) = d(q, £; ¥ Py p)y K20, p2x1,

d‘(q, r) =d(q, r; kK, p, 8), k>0, p21, p> s,

m) m2/2

%
[(q-y)'M(q—r)] , where M = is a positive defirnite
ﬂzlz ms

-
~
L}

ds(Ql

symmetric matrix, (q-r) is taken to be a 2 x 1 coluan vector,

and a prime denoics the transpose operation.

wie




d1 is the rectangular distance function with axes rotated through an angle 6
from the original coordinate axes, multiplicd by the constant k. d, is th
Euclidcan netric. d3 and d, replace the square root and square of the
Euclidean metric by 1 and 2 parameters, respectively. d5 provides for
weighting the squared coordinate differences differently as well as a
weighted cross-product term within the square root. Unit "circles" given by
the points satisfying df(q,O) =1, £=1,2,3, for k=1, p > 1 are sywmetric with
respect to orthogonal ccoordinate axes. However, ds(q,ﬁ) = 1 senerates a log

of points q at unit distance from the origin vhich foras an ellipse. This

’s

1 0 f 'l' ] '\v P } 0 £ e
true since (S(Q, ) = [qtiq)” = 1 holds only 1f q Mq = 1. The locus of point:

1
q such that q'Hq = 1 forms an ellipse when m, < lamlm3 and this incquality
holds since M 1s positive definite. Consequently, a different form of direc-
tional bias in distances between points is modeled using d5 versus using d,,
gay. Specifically, the directicnal bias inherent in d5 {s svch that the
travel direction of greatest ecase is perpendicular to th:ot of pgreatest
difficulty. For d1 these directious are at 450 anzles to one znrother, de
is invariant under rotation of the 'xes since the best direction of axes is
chosen through the parancter my in accordance with a best-fit criterion.
Except for the Fuclidean distance function the remaining functions are not
invarjant under rotation of axes; the analyst's choice of axes affects tic
ability of d1} d3 and d, to accurately predict distances. The inclusion of

0 in dl(q,r) allows for a properly oriented coordinate system to study the
ability of the rectangular distance functfon to predict urban road distances.
ds(q,r) has but three parameters which must be estimated since M {s symmetric
and since any multiplicative constant k can be assumed to have been factored

into the values of My, My, and 0. The indicated conditions on the parcneters

are required for convexity. The authors have shown that ds(q,r) is convex [3).
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The results in the appendix establish that da(q,r) and db(q,r) are also
convex,

Empirical distance functions such as dj, d, end drJ czn be used in a wide
range of applications., Four specific applications which have come to the

authors' attention are discussed here.

s Nehicle T

Kolesar, Walker, and Hausner [5] have formulated and validated a model
for predicting fire engine travel time as follows:
2n/a)t £ D < 24
T(D)
Ve/a + D/V, 1f D > 2d
where T fv average fire eungine travel time, D is the length of the run,
a = acceleration, d. = distance required to achleve cruising velocity, and
Vo = cruising velocity.

It would scos logicel that the wodel or & variation of it could Le used
for wany other types of vehicle travel tizies; we note that the independent
variable of the model is the travel distance. Using the empirical wmethcds
wve suggest here, given the coordinates of any point in the area to bLe served
and the coordinates of the service center, the travel distance may be generated
within the rodel. When large numbers of points are to be considered or the
points are not known in advance (i.e., may be generated randoaly or iteratively
by the model), the advantages of using an empirical distance function are
obvious.

2. Characterization of Road Networks,

The best-fit parameters of the distance functions provide for reduction
of large amounts of distance data to a form which makes possible certain

generalizations about a road network. Consider d(q, r; k, p, p). If k and

p = 1, the network s basically a rectangular grid. As k increcascs vhile

| fil\l..l,i’:)u.l. (~‘U|
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P ® 1 there remains a rectangular bias such that travel 1s wost efficicent
parallel to the orthogonal coordinate axes aud least efficient at 45° angles
to the axes; but there is an increasing nonlincarity in the voadway. A
continuun of rectangular bias is measured along 1 < p < 2. If p = 2, the
network is highly developed since efficiency of travel is not significantly
affected by directionality. 1f p > 2 the directional bias is inverted since
travel is most efficient at 45° angles to the axes and least efficient
parallcl to the axes.

The implicit assumption here is that the effects of k a2nd p are sep o
vhich nay not be strictly valid; e.g., k may not be interpretable as the sole
measure of "curvature" separate and apart from p. Similar analyses are
possible for the remaining distance functions considered in this study.

3. VYerifying Distances in Road Retworks.

As Ginsburgh and Hansen (3] suggest, it is not uncommon that road net-
wvork data are unvelieble. One of their suggested remedies is to verify the
arc length betveen nodes i and § whenever this length does not lie in the
“eonfidence" interval [(I“C)dij' (lic)d:j]. tere d:j 13 the cctimated distance
and ¢ is heuristicclly determined. A transportation manager or urban planner
might screen road network data using this approach replacing d:j by one of the
estiwating functions considercd in this study (4f ncde coordinates can bhe
obtained). We have found this to be a useful technique for verifying data for
traveling salesman and truck dispatching models.

4. Facilitics location Models.

In facilities location models the objective is to locate private or
public units such as factories, distribution centers, ambulance bases, postal
statfons, etc., to optimize an effectiveness criterion involving distances.
Empirical distance functions can fmprove estimatfon of road travel distances
to hypothetical facility locaticns which may be anywhere in the two-dinensional

continuum or obviate the need to individually mcasure myriads of distances

B




when facility locations are restricted to a finfte set of candidates. An
extensive bibliography of location theory literature is given by Frauncis
and Goldstcin [2] and a literature revicw of location in continuous space
by Wesolowsky [9]. Convexity properties of the distance functions may be
important to the user of continuous space location models. It is in regponse

to this need that we have {ncluded a discussion of convexity properties.

2. Design of the Study

Ohio city distances in miles werc derived from data supplied by the
Ohio Department of Transportation. The data consisted of shortest path
distances between cach of a selected number of centroids in a given city.
The rectangular coordinates in niles of each centroid were also supplied.
The selected centroids were chosen to give a "representative' spread of
points within the particular urban boundaries. From these, fiftcen points
were chosen randouly for each city. These points were used to generate a
eample of 105 actual road distances--one for the distance betwzen each pair
of points, Wisconsin road dictances were calculated vsing published road
waps. An orthogonal coordinate system was defined and the fifteen sauple
gencrating points vere sclected by randomly determining pairs of coordinates
and discarding points which fell outside the study arca. Distances and poiut
coordinates were measured directly from the maps in eighths of inches. This
introduces a differcnce in the scale of measurcrent betwcen the Ohfo and
Wisconsin data. This scale difference explains the larger magnitude of values
of the goodness-of-fit criteria ADf and SDf in Tables 1-5 for Wisconsin data
relative to Ohio data.

Nordbeck [7) states that a divisfon of a city is necessary when modeling
road distances {f a river effeccts a separation of the road net. This is truc

since the road net between a pair of points, onec on cach side of the river,




is not homogencous when travel must be routed via bridges. To explore thi:
concern in the study, a random sample of fiftcen of the centreids availal
for Toledo were chosen from those to the west of the Maumee River which
divides the city. This constitutes the seventh set of sample data which will

be designated the Toledo Subarea.

Fitting Criteria

As in the previous study, two criteria of geodness-of-fit were used
measure the accuracy of the functions. The first is the minimization of
oun of absolute deviations given by

ADg = I ldi(aj‘ aL) - A(aj, at)l,
i<t

where J=1,...,14; tojdl ... ,15 and A(aj, ac) is the actual road distance
between points ay and ap- This criterion requires estiwmation of greater
actual distances relatively more accurately than shorter distances. The

gecond criterion is the minimization of a sum of squares given by

e Lol o)
S = I ([df(aj, ag) - h(ay, al))//,'.(;.d, &)l

jet
Division by VA(uj, at) normalizes the squared deviation and renders this
criterion more sensitive than the first to large valucs of ]d{(aj,al) ~ A( J‘al)

in relation to A(aj, at). In this way SDy offers an alternative notion of

goodness-of-fit,

Parameter Definition

The parameters of the functions were chosen as those which best fit the
given criterion for the given sample. The "best" parameter values for each
sample depcend on the criterion used. Computer programs were developed to

perform exhaustive searches for optimal paramcters within chosen intcrvals.

=
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For d(q, r; ¥, p, p) the intervals of scarch were ke[0.80, 2.29) and

pe(0.90, 2.29). This choice was made to allow for the best-fit value of exch

parameter to fall outsfde the expected range from ) to 2. Yor dy the fntervals
of scarch were ke[0.8, 1.25) and Oc[OO, 9001, while for d, the scarch interval
vas ke[0.8, 2.29). The parameter search in the 3-perameter distance models
was conducted in the following way, for each of the 2 criteria.

First the criterion function was evaluated at every grid-point in a uait
cube in the parameter space, using a grid-width of 0.1. In almost all s
the minicum value of the criterion fumction was obtained at an interior point
of the cube. VWhere this did not happen, the process was repeated after
shifting the cube in the appropriate direction, untfl an interior minimum on
the 0.1-grid wvas formed.

At this point a search was conducted on the grid-points in a cube with
gide~lcagth 0.2 centered on the kest goint in the coarse grid, using a grigd.
width of 0.01. tVthen the winiicin value of tha criterion function was obrain
at an interior point of tho cube,; the pavaneter search was terniratcd. This
happened with both criteria for all geograph'cal areas, when dg was canloyed.
With d,, however, in many cases the search over the fine grid had to be re-
peated several times. Each time the cube was shifted in an appropriate
direction until an interior mininmum was found.

The search procedurc cuployed does not ensure that a global optimun (to
2 decimal points) was found. MHeowever, severzl of the parameter values were
verified by doing a total enurmeration on a relatively coarse grid (.1). W&o
feel confident, therefore, that the reported paramecter values in most cases

are optimal. Where this is not the case, the reported figures are probably

near-optimal, at least with respect to the value of the criterion function.

afis
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3. Statistjical Tests

The differing estimating accuracy of the distance functions can be
associated with statistical significance using the t-test for matched pairs.
Define Xf(aj, at) - Idf(aj' at) - A(aj, at)]//H(HIT‘EIT and the difference
dng(aj. a,) = Xg(aj, at) - Xf(aj, a,). Each such differcnce is between two
observations on the sarce selected road distance. Division by /X?;;T_SET is
used to accomplish homoscedasticity. This was necessitated since the varia-
tioen in !df(aj, at) ~ A(aj, at)! tends to be directly related to the magritude
of A(aJ, a;). These definitions lead naturslly to a test of differences
between means based on matched pairs. This test, as opposed to othlicrs that

1.ight have been used, is unaffected by the lack of independence of the error

in the distance functions. The test statistic is t a dx i/S__, vhere
ef il Ty

Eiéf = T dxnf(aj' at)/n, St is the standard error of the difference
j<t dng

4

and n=105. The neccssary assumption that the population of differences is
normally distributed in order that tgf h2s the t-dicstribution with n-l
degrees of freedoa appears reaconable in this context of cstination criors,

Consider the first criterion of goodness-of-fit. If dg actually pro-

! duces values of AD, lower than that for AD[ then tYf' which is made up of

8

terms of AD, and ADg, has a negative expectation. Said another way, if dz

g

is "more accurate" than dg¢ then the average value of Xg(q,r) should be less

than that for X;(q,r). As the computed value of t ¢ + - @, the weight of

sf
sample cvidence favors rejection of the null hypothesis E[XY(q,r)]—L[X:(q,z)] = 0
and lends statistical significance to the negative value of Eiéf. To give

substance to this notion a significance probability is reported as the area

under the t-distribution with 104 degrees of freedom in the interval (-=, tgf)'

] Although a t-test could be deviscd analogously to be associated with the

Tgns




=

sccond criterion of goodness-of-{it this was not done in order to avoid unduc

proliferation of statistical tests,

4. Presentation and Analysis of Results
The results of fitting the five distance esticating functions to the
seven sawple cets of urban and rural road distances are summarfized in
Tables 1-5. The statistical valuecs associated with the fitting criteria are
given in Table 6. Certain observations can be made. The goodness-cf-£4it cf

d4 to the actual road distancecs vas superior to that of dS' the other thi

parameter function, in cvery case except for the rural Wisconsin data. Statis-

tical significance accompanied this superjority in the Columbus, Milvaukece,
Toledo and Toledo Subarea samples. dg includes dy, dy and d3 as special cases
and therefore estimates distance at least as accurately. This structural
guperiority led to statietical significance at every opportunity except for

dy and d3 in the Madicon and rural Wiscoacin samples. The fitted parcmsters

1

of d, do not satisfy coavezity conditions for zry but the Madison and lilwealcs
data sets. This result may frustrate the use of d, in facilities location
objective functions which are part of urban location models. A practical
remedy would be to fit the paraceters of d& under the condition p > s. The
simplifying assumption that p = s suggested by previcus results [6] does naot
scem justificd for the Ohio data. The fitted parzmeter values for dy and dg
satis{y the 'respective convexity conditions in every case.

The rectangular distance function dj does not fare well in relation to
the alternatives. In most cases this inferiority was substantiated by clear
statistical significance. Indeed, only for the !ilwaukee sample did the
accuracy of d; surpass cven that for the Euclidean function dy. The computa-

tionally convenfent rectangular distances may therefore provide a relatively

poor fit to a varicty of urban data bases.

0=




Sample
el e I

Canton

Colunbus

Madison

Milwaukce

Rural Vis,

Toledo

Toledo Sub.

*

Table 1

*
Mininizing Pavamcters of dj

AD1

k

E28.05 (136.71)
86.07 (88.35)
1015.96(1057.63)
628,95 (727.10)
508,42 (515.81)
99.73 (114.83)

69.60 (76.12)

1.04(0.
1.02(0.
0.98(0.

0.95(0.

1.05(Q]

0.97(0.

0.97 (0.

95)
99)

97)

.05)

99)

94)

15

Parenthetical values correspond to the original axes.

Sample

Canton
Colunbus
Madicon
Milwaukee
Rural Wis.
Toledo

Toledo Sub,

Mininizing

AD,

78.39
80.20
£69.40
714.83
480.19
74.13

49.17

Table 2

=
1.20
L 27
1.25
1.16
1.35
1.21

1.21

Farameters of

8.78
125.73
72.17
72.90
8.70

7.18

86)
91)
42)
£3)
38)
30)

98)

SI)’
25.3Y (17,
10.53 (10.
57.49(163.
66.86 (87.
94,95 (96.
14 .47 (1E.3
1182 (13

o

122
1.28
1.25
1.18
1.34
1.24
1.23>

A

03(0.95)

.01(1.00)

.98(0.98)

.97(0.94)
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Table 3
*®
Minimizing Parancters of d,
—Sauple ar p s o e
Canton 65.62" 1.16,1.49 6.03" 1.18,1.56
Columbus 68, 54 1.18,1.47 6.86 1.18,1.45
Madison 830. 34 1.16,1.48 113.24 1.18,1.56
Milvaokee 508.81" 1.03,1.30 46.3" 1.07,1.3¢
Rural Wis. 452.74" 1.26,1.45 70.45 1.29,1.¢
Tolcdo 71.69 1.18,1.74 8.41" 1.20,1.73
Toledo Sub. 48.13% 1.18,1.78 7.07% 1.21,1.8)

*

Entries correspond to original axes or axes rotated through the angle given
in Table 1, whicihiever case yieclds the lower criterion value. An asterisk
denotes that the result is for rotated axes.

Table 4
Mintniztun Peroseters of d,”
= Smple s 3 S 5 7 4 BPaS
Canton 60.34" 3,53,1.66,1.78 4.10 1.53,1.61,1.99
Coluabus 53.76 1.45,1.38,1.52 4.39 1.49,1.41,1.57
Madicon 824.20 1.07,1.56,1.51 113,20 1.14,1.54,1.53
Milvaukee 508.81" 1.06,1.30,1.30 46.29" 1.03,1.34,1.33
Rural Wis. 447.10 1.56,1.50,1.59 70.24 1.37,1.65,1.68
Toledo 54.90 1.56,1.68,1.90 4,95 1.56,1.70,1.92
Toledo Sub. 34.08% 1.55,1.88,2.12 2.69 1.64,2.35,2.70

.Sce note for Table 3.

]2
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Table 5

Mininizing Parancters of dg

Canton
Columbus
Madison
Milvaukee
Rural Vis,
Toledo

Toledo Sub.

ADs Wy, By, Ry SDg By 2 By 4 8y
63.37 1.47,-0.41,2.02 5.17 1.47,-0.29,1.92
70.99 1.46,-0.99,1.78 7.52 1.50,-0.04,1.6]

855.30 1.65,-0.01,1.46 120.00 1.64, 0.00,1.44

657.70 1.64,-0.09,1.27 62.05 1.56,-0.11,1,31

430.60 1.62,-0.48,1.50 66.80 1.81,-0.36,1.F

67.90 1.52,-0.23,1,37 8.01 1.57,~0.21,1.47

47.54 1.58,~0.09,1.43 6.77 1.70,-0.08,1.44
Table 6

Values of Eigf and Significance

Probabilities (Pareanthetically

14
2 3 4 5
1 -.09 -.13 -.15 -.16
(.00) (.00) (.00) (.00)
2 -.03 ~-.006 -.05
(.00) (.00) (.00)
3 Canton -.03 -.01
(.00) (.18)
Sample
4 .02
(.87)
8
2 3 4 S
1 -.01 -.04 -.09 -.03
(.38) (.01) (.00) {.12)
2 -.03 -.08 -.02
(.00) (.00) (.02)
3 Columbus -.05 .01
Sacple (.00) (.75)
4 .06
(1.00)
-] 3w
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Table 6 - Continued

&

2 3 4
~,20 -.23 -.23
(.00) (.00) (.00)

~-.03 -.03
(.25) (.20)
fadison -.00

Sample (.45)

4

2 3 4

.06 -.05 -.12
(.81) C11) (.00)
-.11 -.18
(.00) (.00)
Miluvaulice -.07
Sample (.00)

g

2 3 4
-.04 -.07 -.07
(.22) (.01) (.03)

-.03 -.03
(.092) (.09)
Rural .00
Wisconsin (.53)
Sample
-14-

-.22
(.00)

-.01
(.29)

.01
(.62)

.02
(.65)

~
¥ o
o D
Vo~
N

S
(1.00)

-.10
(.05)




A < 2

Table 6 - Continucd

4
2 3
-.07 -.07
(.00) (.00)
~-.00
(.15)
Toledo
Sawple
g
2 3
-.05 -.046
(.C0) (.C0)
-.00
(.20)
Toledo
Subarea
Sauple
-15-

(.00)

.06
(.00)

".0(1
(.00)

-.15
(.00)

-.10
(.02)

-.09
(.00)

-.08
(.00)

-.01
(.006)

-.01

(.17)
.05

(.99)

-.06
(.00)

-.01
(.01)

-.01
(.11)

.09
(1.00)




The Euclidcan functfon which models road distances as having no directional
bias cenerges as preferable to d] on the basis of accuracy and convenicuce.

Only the inflation factor Kk must be estimated and an optirmal coordincst= syste
need not be {dentiffed. 1If this optimality were not incorporated into d;
through the angle 6 and the original axes were used, the dominance of dj over
d; would be total. The values of k were generally greater for these sampled
distences than for the inter-city distances of the previous study.

The two-paraueter function d3 is not decidedly inferior to either d& or
dg, cach of which requircs the estimation of threc parancters. The valuc~ of
p for dj even for the cases of rotated axes do not appear to be consistently
close to unity. This would further substantiate the lack of a strong rectan-
gular bias in the road networks of the chosen study areas., Addition of the
parameter 6, as in dl’ to provide an optimal coordinate systen could only
inprove the accuracy of d3. This was not done here in order to keep the
computat fonal burden within tolerable limits.

The “quadiatic foru" function dg proves to bte relatively accurate. The
absolute valu: of ™) is typically close to zero. This implies that thlz major
and minor axes of the ellipse defined by ds(q,O) = ]1 are generally cloce to
coinciding with the coordinate axes used in the study. Since oy ¢ o, the
locus of points satisfying ds(q,O) = 1 {s indeed an cllipse. The param:zters
for d5 using rural distances provide the greatest deviation from these general-
izations., For this sample, m = my. Since my = -0.48 and -0.36, the najor
axis of the ellipse points in a southwest-northeast dircction. Additionally,
dg best estimates the rural distances under both criteria. The directional
bias afforded by d5 may have special application to such rural settings.

The rural distances sample leads to the greatest value of k in each of
‘l' dz and dy. This sample cocs not otherwise lead to distinguishably different

paramcter valucs for d; through d, in relation to the other samplea. The values

-16-




of p show no tendency toward 1 or 2 in dj, while the values of p and s which
arc similar for d, also fall almost midwoy betveen 1 and 2. The Toledo sub-
area sanple allowed for lower values of each AD‘ and SD¢ than those for the
Toledo sample which includes some points on opposite sides of the Maumee
River. The parameter values of the functions cre different for the tvo
Toledo samples.

In general, the parameter values for each function vere different for
different samples and for each criterion of goodness-of-fit. In the previcus
study, parameter values were relatively the same for cach criterion. This
signals the importance of fitting an empirical distance function to the par-
ticular area of study when a premfum is placed on accuracy. There is a
robustness in the relative accuracy of the functions but the analyst must
tailor the parametcr values to the study area and according to a useful
criterion of goodness-of-fit., 1In order to illustratec how sensitive the
criterion functions are to changes in the pararcter valucs, ve give the fcol-
lowing two tables cf criterion valucs in a cosrce grid centered at the optiral

point. In both cases the geographical area s Canton, thc criterion is CD

)

and the grid-width is 0.1.

Comparing the two tables, it appears that for dS the second critericn is
convex in the paramcters my, 0y, and @y, and 1is only slightly scnsitive to
changes in them. For d, and fixed k the second criterion seems to give rise
to a surface like a flat-bottomed valley with very steep sides. This difference
accounts for the rclative difficulty in estimating the parazeters of the sccond
wodel., For this model, Table ? also indicates that parameter values in an
extended region may give a near-optimal fit, as long as the proper balance is

maintained between p and s.
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Table 7

Values of SD, About k=1.6,

p=l.7, 7.‘-‘“1.9 \.'-l;«:! x‘r S.')‘.‘ “ 4.8

k=1.5 k=1.6
5 1
1.8 1.9 2.0 1.8 1.9
P P
L e T :
1.6 : 8 46 106 y : 4.9 23,
] ]
] 1
2.7 : 18 8 43 Re? } 47 4.8
| - |
1.8 } 110 17 7 1.8 : 187. 45,
Table 8

2.0

71.

20.

4.8

1.6

1.7

1.8

Values of SD5 About the Optimunm

nlul.S, m2"~0.3, n3n].9 vhere §Dg = 542

mlt=] 4 m1=1.5
1.8 1.9 2.0
37 5.3 - 5
5.4 S.2 5.5
s O 5.6 6.0
-18-

k=1.,7
1.8 1.9 2.0
15 10 43
94 15 8
288 90 15
m1=1.6




5. Conclusions

Empirical distance functfons are suggestcd for {mproved accuracy in
predicting actual road distances betuwcen two points in an area under study.
Paramecter values may be estimated upon defining a meaningful goodness-of-fit
criterion. The standard assumption that urban distances are rectangular fs
not supportcd by the results reported here. The Euclidean distance is rore
convenient to use and appears to estimate urban distances wore accurately
unless the road network is endowed with a strong rectangular bics., The
fifth distance wodel produced reasonably accurate recults. However thic
function, with its unique directjonal bias, would scem to be especially suit-
able where the road network is not highly developed--such as i{n certain low
populatjon density regions. In addition, the parameters of dg, which alvay.

satisfied convexity conditions, were more casily estimated than those for d

the other three-paramcter function. d, proved to be wost accurate for th
urban data sets. lovever, the empirically determined parcmeteyr values t)
fofled to satisfy coavexity conditions. A reucsdy would be to epforee th

vexity conditions in the parameter .stimatfon. d3 gave rclatively accura
results although it was shown to be inferior to the more general dA through statis
tical analysis. If a three parameter function is to be considered, inty ‘vcd

the parameter 8 into the definition of dj to optimally orient the coorciuite

system would combine convexity and case of parameter estimation with accur;cy.l
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Transportation, especially Charles Gebhardt and Charles Groves, in supplying
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helpful ascistance in completion of the study., Dean Wichera provided helpfud
discussions of the statistical anmalysis. A special note of thanks fs extendea
to the anonymous referee whose ceriticisms of an earlier draft led to subctantive
fmprovements in the paper.
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APPENDIX
Convexity Propertics

Proof of the convexity of d,(q,r) when p > 1, p > 5, and k > 0:

2 1/s

P
It 1s sufficient to prove that L lqt - ril is convex. It is
=1

i

known that d(q, r; 1, p, p) is convex. Let g(y) = yb, y>0and b > 1,

Then g is an increasing convex function of y. Letting b=p/s we can urite

1

since an increasing convex function of a convex function {s convex.

2 1/s
[}I |q1 - rxlf} = g(d(q, r; 1, p, p)) which is convex for p > 1, p > ¢,

This extends and generalizes an earlier result by Cooper [1] that

2 LSKf2
Q(XnY) - BJ[(XJ - x) 2 (YJ - y) ] /

k>1 and BJ > 0 since the above proof neither requires that Xy and Yy

be constoots nor that p=2.

Proof of the convexity of ds(q,r) vhen }M is positive definite:

is a convex function of (x,y) for

' [
Let (ay, 1y, Qp, 1) = (X3, %y, g, %,) = x and y = (y;, ¥, ¥30 ¥)-

Then

dg(q,r) = dg(x) = [ml(xl - xz)2 + mz(xl - xz)(x3 xg ) m3(x3 - x,‘)Z]li "

To prove the convexity of dS we must prove that for any x and y and any non-

negative numbers a, B, where a + B = 1, the inequality

ds(cx + By) < uds(x) + Bdg(y)

must hold.

Since M is positive definite,

« 0=




ng_.‘,q,'?,mmw.

s ( T}’ o, -
0 < [dg(ax + 8y))% = [a i, + 8 e M|a 172 + 8 il
x3-x4J LY3'Y(,J LX_';")?/‘J Ya=¥4 :
~ "1"‘21 LY 177,) [y,
<a M + 8 M
x3-x‘4 \x3-xM g;*ya‘ Y3‘YQJ

See Hadley [4, p. 85].

Taking the square root of both cides of the sccond inequality, and

. S

X
noting that (a1 + az) L8 + a, vhen a;, 8, > 0, ve can write

[ ' -
. Y s g - %
X =X X, =X ¥y Y-y
& I % 1502 +B12 M 1-¥2

xa-xa xs—xa Y3'Y4 Y3-y4

ds(ux + By)

Ia

Ia

nds(x) + Bds(y) s

vhich §s the desired result.
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